Comparaison de différentes techniques de greffage vis-à-vis de leur efficacité de transmission virale sur vigne

par

FLORENCE LAHOUGE, G. BOULARD et C. SCHNEIDER

INRA, Laboratoire de Viticulture, Colmar, France

Résumé : Dans le but d'effectuer un criblage rapide d'un grand nombre de variétés de vigne vis-à-vis de leur résistance aux virus, nous avons recherché quelle méthode d'inoculation était la plus adaptée. L'inoculation mécanique d'un virus à la vigne étant difficile à obtenir, nous avons comparé différentes techniques de greffage : greffage sur bois, greffage en vert avec porte-greffe préalablement enraciné ou non, chaque fois, deux positions possibles pour l'inoculum : greffon ou porte-greffe.

Les résultats de cette étude indiquent que le greffage sur bois avec l'inoculum en position de porte-greffe correspond à la méthode la plus efficace. Toutefois, le greffage en vert avec porte-greffe non enraciné donne également de bons résultats, toujours avec l'inoculum en position de porte-greffe. Étant donnés les avantages que présente la greffe en vert en ce qui concerne la surface nécessaire à sa réalisation et sa vitesse de réalisation, ainsi que son utilisation possible tout au long de l'année, elle paraît tout à fait adaptée pour inoculer un grand nombre de variétés.

Comparison of the viral transmission efficiency of different grafting techniques on grapevines

Summary: With the objective of screening a great number of grapevine varieties for their resistance to virus diseases, we looked for the most appropriate technique of inoculation. As the mechanical inoculation of a virus to the grapevine succeeds only under special conditions, we compared different grafting techniques: dormant grafting and green grafting, the last with and without previously rooted rootstock. For each of these three methods, the inoculum was used as the stock on one hand, as the scion on the other hand. This study proved that the dormant grafting technique using the inoculum as the rootstock is the most efficient technique. Nevertheless, good results were obtained by using the green grafting technique without previously rooting the rootstock, the inoculum being also used as the rootstock. As the green grafting method doesn’t require a great area, is not time-consuming and can be performed throughout the year, it seems therefore to be a very convenient method of inoculating a great number of varieties.

Key words: Vitis, GFLV, efficiency of inoculation, dormant grafting, green grafting.

Introduction

L'inoculation mécanique d'un virus à la vigne semble être difficile à obtenir (Nystarakis 1947; Brückbauer et Rüdel 1961). Les cas de succès décrits ont été effectués sur des semis de Vitis vinifera var. Mission ou des boutures de Vitis rupestris var. St George préalablement étioles (Martelli et Hewitt 1963; Taylor et Hewitt 1964). Il apparaît donc qu'à part l'inoculation à l'aide du vecteur naturel lorsqu'il est connu, le meilleur moyen de transmettre un virus à une vigne soit le greffage. Récemment, la technique de la greffe-bouture herbacée s'est révélée être d'un grand intérêt aussi bien pour la multiplication des plantes (Martin et al. 1987) que pour le dépistage des maladies virales (Walter et al. 1990; Bass et Vuittenez 1979). Nous avons donc comparé, dans cette étude, les taux d'infection obtenus par ces deux modes de greffage en fonction de l'espèce et de la position de l'inoculum, le virus considéré étant le grapevine fanleaf nepovirus (GFLV).

Correspondance à: Dr. FLORENCE LAHOUGE, ENSAM-INRA, UFR de Viticulture, 2, place Pierre Viala, F-34060 Montpellier, France.

List of varieties used in the study. HI: Interspecific hybrid. Occidentalis, Pontica, Orientalis: Classification of *V. vinifera* according to Negrol (1938). Obtention: Variety obtained by crossing two *V. vinifera*. American: *Vitis* American

<table>
<thead>
<tr>
<th>Variété</th>
<th>Nom</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140 Ruggeri</td>
<td>HI</td>
</tr>
<tr>
<td>2</td>
<td>Pinot noir</td>
<td>Occidentalis</td>
</tr>
<tr>
<td>3</td>
<td>V. Berlandieri n°26</td>
<td>Américain</td>
</tr>
<tr>
<td>4</td>
<td>Bogazkere</td>
<td>Pontica</td>
</tr>
<tr>
<td>5</td>
<td>Fouhi Khechen</td>
<td>Pontica</td>
</tr>
<tr>
<td>6</td>
<td>Irisay Oliver</td>
<td>Pontica</td>
</tr>
<tr>
<td>7</td>
<td>Perle de Csaba rouge</td>
<td>Obtention</td>
</tr>
<tr>
<td>8</td>
<td>Rudiezusa</td>
<td>Pontica</td>
</tr>
<tr>
<td>9</td>
<td>Sahami</td>
<td>Orientalis</td>
</tr>
<tr>
<td>10</td>
<td>Sultanine blanche</td>
<td>Orientalis</td>
</tr>
<tr>
<td>11</td>
<td>Tiliacea</td>
<td>Occidentalis</td>
</tr>
<tr>
<td>12</td>
<td>Ampelopsis brevipedunculata</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>V. longil</td>
<td>Américain</td>
</tr>
<tr>
<td>14</td>
<td>Gravesac</td>
<td>HI</td>
</tr>
<tr>
<td>15</td>
<td>Hybride Becker</td>
<td>HI</td>
</tr>
</tbody>
</table>

au cours de l'hiver 92-93 les sarments nécessaires à la réalisation de la greffe sur bois. En revanche, au printemps 1993, toutes les pousses ont été laissées afin que les rameaux herbacés soient d'un diamètre d'environ 5 mm, compatible avec le greffage en vert.

Le greffage sur bois: Suivant la position de l'inoculum, le type de greffage utilisé n'a pas été le même: greffe omega lorsque l'inoculum est en position de porte-greffe (I=PG) (Fig. 1a); greffe par incrustation lorsque l'inoculum est en position de greffon (I=G) (Fig. 1b).

Ce greffage a été réalisé en janvier 1993 et les greffes ont été conservées dans la scieure en chambre froide jusqu'en mai, date à laquelle elles ont été mises en forçage (2 semaines à 30 °C) puis plantées en pépinière. Pour chaque variété, 11 à 15 greffes ont été effectuées par modalité.

Le greffage en vert: Deux modes de greffage ont été testés dans cette étude: porte-greffe non enraciné qui correspond à la technique de la greffe-bouture herbacée (Walter et al. 1990); porte-greffe enraciné, c'est-à-dire que la bouture qui sert de porte-greffe a été mise à raciner environ 20 jours avant d'effectuer le greffage.

Pour chacun de ces modes, les deux positions d’inoculum (porte-greffe et greffon) ont été comparées.

Quatre modalités différentes ont donc été étudiées dans le cas du greffage en vert. Mais quelque soit cette modalité (Fig. 1c), porte-greffe et greffon ont été assemblés à l’aide d’une machine à greffer Greffenvert (brevet Mumm-Perrier-Jouet n° 86.01117), qui réalise une greffe en fente pleine, et maintenus ensemble à l’aide d’une mini-pince en plastique. Les greffes ont été élevées sur laine de roche préalablement trempée dans la solution nutritive additionnée de 5 mg/hl d’acide naphthalène acétique. La soudure a été obtenue en conservant les greffes pendant trois semaines dans des mini-serres hermétiquement fermées, dans les quelles une température de 25 °C et une humidité de 100 % sont maintenues, l’intensité lumineuse étant progressivement augmentée de 900 à 2200 lx (photopériode de 16 h). Lors du passage en serre dite de sevrage favorisant le démarrage de la pousse du greffon, la pousse du porte-greffe des greffes I=PG a été coupée. Ensuite, les greffes ont été élevées en serre dans les mêmes conditions que les plantes mères.

Ce greffage a été effectué en juillet 1993, à raison d’une quinzaine de répétitions par variété.

Contrôle de l’infection: Le contrôle de l’infection a été fait par tests ELISA sur jeunes feuilles réalisés à différentes dates après le greffage. Le protocole suivi correspond à la méthode ELISA directe décrite par Walter et al. (1984) avec utilisation du système biotine-avidine pour amplifier la réponse. Les serums ont été fournis par le Laboratoire de Pathologie Végétale, INRA de Colmar.

En ce qui concerne le greffage sur bois, le temps *t*₀ considéré correspond à la date de mise en forçage des greffes. Les tests ELISA ont alors été effectués à *t*₀+2 mois, *t*₀+4 mois, *t*₀+5 mois et enfin *t*₀+14 mois. Jusqu’à *t*₀+5 mois, les feuilles ont été prélevées sur les greffes toujours en pépinière. Après aoutement, ces greffes ont été arrachées, conservées au froid durant l’hiver (93-94) et remises en végétation en serre en juin 1994 jusqu’au prélèvement des feuilles à *t*₀+14 mois.

Dans le cas du greffage en vert, *t*₀ étant la date de greffage, le contrôle de l’infection a été fait à *t*₀+4 mois, *t*₀+5 mois, *t*₀+7 mois et enfin *t*₀+12 mois. Les individus ont été maintenus en végétation durant toute cette période.

Au maximum 10 pieds par variété et par modalité, désignés par tirage au sort, ont été contrôlés. Dans le cas où I=G, si nous appelons IP les greffes ayant un inoculum poussant et IM les greffes ayant au premier test ELISA un inoculum mort, que le bourgeois de celui-ci ait débourré ou non, les pieds IP ont été testés en priorité.
Un pied répondant positivement sans doute possible à un test n’a plus été contrôlé ultérieurement.

La méthode de Newman et Keuls a ensuite été utilisée pour classer les modalités des différents effets mis en évidence.

Tableau 2
Signification des abréviations utilisées dans les tableaux et figures

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Signification</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep1</td>
<td>Pourcentage de reprise au greffage</td>
<td>Percentage of graft take</td>
</tr>
<tr>
<td>Rep2</td>
<td>Pourcentage de greffes exploitables</td>
<td>Percentage of usable grafts</td>
</tr>
<tr>
<td>Inf</td>
<td>Taux d’infection</td>
<td>Percentage of infection</td>
</tr>
<tr>
<td>4m, 5m, 1an</td>
<td>4 mois, 5 mois, 1 an après le greffage</td>
<td>4 months, 5 months, 1 year after grafting</td>
</tr>
<tr>
<td>IP</td>
<td>Greffes ayant un greffon-inoculum poussant = greffes réussies</td>
<td>Gras with a growing scion-inoculum = successful grafts</td>
</tr>
<tr>
<td>IM</td>
<td>Greffes ayant un greffon-inoculum mort au premier test ELISA</td>
<td>Gras with a dead scion-inoculum at the time of the first ELISA test</td>
</tr>
<tr>
<td>T</td>
<td>Greffes IP + IM</td>
<td>IP + IM grafts</td>
</tr>
<tr>
<td>B</td>
<td>Greffage sur bois</td>
<td>Dormant grafting</td>
</tr>
<tr>
<td>VNE</td>
<td>Greffage en vert, porte-greffe non enraciné</td>
<td>Green grafting, unrooted rootstock</td>
</tr>
<tr>
<td>VE</td>
<td>Greffage en vert, porte-greffe enraciné</td>
<td>Green grafting, rooted rootstock</td>
</tr>
<tr>
<td>gref</td>
<td>Facteur mode de greffage</td>
<td>Grafting technique</td>
</tr>
<tr>
<td>pos</td>
<td>Facteur position de l’inoculum</td>
<td>Inoculum position</td>
</tr>
<tr>
<td>var</td>
<td>Facteur variété</td>
<td>Variety</td>
</tr>
<tr>
<td>I=PG ou IPG</td>
<td>Inoculum en position de porte-greffe</td>
<td>Inoculum used as the rootstock</td>
</tr>
<tr>
<td>I=PG ou IP</td>
<td>Inoculum en position de porte-greffe</td>
<td>Inoculum used as the scion</td>
</tr>
</tbody>
</table>

Résultats

L’effet des facteurs mode de greffage, position de l’inoculum et variété a été étudié vis-à-vis du taux de reprise et du taux d’infection en fonction du temps.

Nous appellerons Rep1 (pour la signification des abréviations voir Tab. 2) le taux de réussite au greffage mesuré à la date du premier test ELISA, c’est-à-dire le pourcentage d’individus pour lesquels la soudure de l’assemblage greffon/porte-greffe s’est bien faite.

Mais dans le cas où I=PG, un autre type d’individus peut être exploité: les greffes appelées IM. En effet, malgré un temps de contact inoculum/variété à inoculer assez court, la transmission du virus a quand même pu se faire. Nous pouvons alors définir Rep2 comme étant le pourcentage de greffes exploitables mesuré toujours à la date du premier test ELISA, prenant en compte les pieds IP mais aussi les pieds IM.

Naturellement, dans le cas où I=PG, Rep2=Rep1 (les greffes pour lesquelles seul le porte-greffe-inoculum reste vivant ne présentent pas d’intérêt).

Le taux d’infection représente dans cette étude le pourcentage de pieds dans lesquels le virus a été détecté. Les valeurs obtenues pour les différentes modalités étudiées diffèrent selon que l’on prend en compte les pieds comptabilisés dans Rep1 ou les pieds comptabilisés dans Rep2. Inf4mIP, Inf5mIP et Inf1anIP représentent donc les taux d’infection obtenus respectivement au bout de 4 mois, de 5 mois et d’1 an sur les greffes ayant réussi.

Inf4mT, Inf5mT et Inf1anT représentent les mêmes taux d’infection mais obtenus sur les greffes exploitables.

Effet mode de greffage: Le mode de greffage a un effet hautement significatif sur le taux de reprise et le taux d’infection (Tab. 3). Toutefois, si on ne considère que les greffes ayant réussi, son effet s’annule avec le temps puisqu’un an après le greffage les taux d’infection obtenus ne sont plus significativement différents (Fig. 2).

Toutefois, en ce qui concerne le taux de reprise, il existe une forte interaction entre ce facteur mode de greffage et les facteurs position de l’inoculum et variété:
- intéressons-nous d’abord à l’interaction mode de greffage X position de l’inoculum. En effet, lorsque I=PG, le greffage sur bois donne de bien meilleurs résultats que le greffage en vert, l’enracinement préalable du porte-greffe dans ce dernier cas étant encore moins favorable (Tab. 4). Par contre, lorsque I=PG, des valeurs semblables aussi bien pour Rep1 que pour Rep2 sont obtenues quelque soit le mode de greffage utilisé.
- D’ailleurs, lorsqu’une analyse de variance est réalisée séparément pour chaque modalité du facteur position de
Effect of grafting technique on the percentage of take and the percentage of infection (see Tab. 2 for abbreviations).

NS: No significance at 5%, *, **, ***: Indicates a 5%, 1%, 0.1% significance level. Numbers of the same line followed by the same letter are not significantly different.

Table 3

<table>
<thead>
<tr>
<th>Effect of grafting technique on the percentage of take according to the position of the inoculum. Abbreviations see Tab. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne B</td>
</tr>
<tr>
<td>Rep1</td>
</tr>
<tr>
<td>Rep2</td>
</tr>
<tr>
<td>Inf4mIP</td>
</tr>
<tr>
<td>Inf5mIP</td>
</tr>
<tr>
<td>Inf1anIP</td>
</tr>
<tr>
<td>Inf4mT</td>
</tr>
<tr>
<td>Inf5mT</td>
</tr>
<tr>
<td>Inf1anT</td>
</tr>
</tbody>
</table>

Table 4

Effect of grafting technique on the percentage of take according to the inoculum position. Abbreviations see Tab. 2.

Table 5

Effect of inoculum position on the percentage of take and the percentage of infection. Abbreviations see Tab. 2.
Techniques de greffage et transmission virale sur vigne

![Graphs showing infection rates](image)

Fig. 3-5: Evolution du taux d'infection. 3 Greffage sur bois, inoculum en position de greffon; 4 Greffage en vert, porte-greffe non enraciné, inoculum en position de greffon; 5 Greffage en vert, porte-greffe enraciné, inoculum en position de greffon. Abréviations voir Tab. 2.

Changes of the percentage of infection. 3 Dormant grafting, inoculum used as the scion; 4 Green grafting, unrooted rootstock, inoculum used as the scion; 5 Green grafting, rooted rootstock, inoculum used as the scion. Abbreviations see Tab. 2.

(cf. Effet mode de greffage). De la même façon, il n'est donc pas possible de conclure à un effet global de la position de l'inoculum sur le taux de reprise au greffage.

Lorsque nous prenons en compte le nombre de greffes exploitables (Rep2), les valeurs observées lorsque I=PG restent inchangées alors que celles observées lorsque I=G sont augmentées, favorisant cette dernière modalité, du moins en ce qui concerne le greffage en vert (Tab. 4). Mais ceci est lié à la définition de notre variable Rep2, et non à un effet position de l'inoculum.

Dans le cas de Rep2, il existe une interaction significative entre la position de l'inoculum et la variété. Cette interaction est due aux variétés 12 (A. brevipedunculata), 6 (Irsay Oliver) et 7 (Perle de Csaba).

En ce qui concerne le taux d'infection, de bien meilleurs résultats sont obtenus lorsque I=PG, l'écart restant significatif après 1 an (Tab. 5). La supériorité de cette modalité par rapport à I=G est renforcée lorsque nous prenons en considération les greffes exploitables puisque, comme nous l'avons déjà vu précédemment, les pieds IM ont un moins bon taux d'infection. Ainsi, l'inoculation est plus efficace lorsque I=PG.

Effet variété: Les variétés ont une aptitude au greffage significativement différente (Tab. 6). Aucune greffe n’a été obtenue pour la variété 12 (A. brevipedunculata). Cette incompatibilité s’explique aisément par son appartenance à un autre genre que *Vitis*. Même si cette variété est éliminée de l’analyse, l’effet variété reste significatif vis-à-vis du taux de reprise.

A. brevipedunculata et 140 Ruggeri sont responsables des interactions qui existent entre la variété et le mode de greffage, et *A. brevipedunculata*, Irsay Oliver et Perle de Csaba entre la variété et la position de l’inoculum.

Dans le cas du taux d’infection, un effet variété n’apparaît qu’au bout de 5 mois.

Discussion

Les meilleurs taux d’infection sont obtenus d’une part lorsque l’inoculum est en position de porte-greffe, et d’autre part lorsque le greffage sur bois est le mode de greffage utilisé. Toutefois, les taux d’infection obtenus par greffage en vert après un an ne sont plus significativement différents de ceux obtenus par greffage sur bois (Tab. 3, Fig. 2).

Toutes les variétés n’aboutissent pas à des taux d’infection équivalents puisque ceux-ci deviennent significativement différents au bout de 5 mois (Tab. 6). Deux conclusions sont alors possibles: soit les variétés ont des aptitudes différentes à s’opposer ou retarder la multiplication du virus, soit c’est leur aptitude différente au greffage qui permet une soudure plus ou moins bonne et donc une inoculation plus ou moins efficace. La seconde hypothèse semble être la bonne puisque pour toutes les variétés, le virus n’est détecté dans au moins une greffe 4 mois seulement après l’inoculation. De même, pour toutes les variétés, le virus n’est détecté dans certains pieds IM qu’au bout d’un an (Fig. 3 à 5). Ce retard de la multiplication du virus n’est pas lié à une résistance génétique plus ou moins forte de la plante mais plutôt à son état physiologique. En effet, de t₀ + 4 mois à t₀ + 7 mois pour la greffe en vert (novembre à février) et de t₀ + 3 mois à t₀ + 5 mois pour la greffe sur bois (août à octobre), les plantes étaient en phase de croissance ralentie ce qui n’a pas permis une multiplication importante du virus. Par contre, l’arrivée du printemps pour la greffe en vert et la remise en végétation pour la greffe sur bois, en permettant une croissance dynamique des plantes, favorisent la multiplication virale.

En ce qui concerne le taux de reprise, lorsque l’inoculum se trouve en position de porte-greffe, le greffage sur bois est nettement supérieur au greffage en vert, alors que si l’inoculum se trouve en position de greffon, tous les modes de greffage sont équivalents (Tab. 4). Le fait que, dans ce dernier cas, le greffage sur bois perde sa supériorité n’est pas lié à la position de l’inoculum mais au système de greffage utilisé. Il semble en effet que la greffe par incrustation ait un moins bon taux de réussite que la greffe omega.
Tableau 6

Effet variétal sur le taux de reprise et le taux d'infection. 1 à 15: Variété n°1 à n°15. Abréviations voir Tab. 2

Effect of variety on the percentage of infection. 1 to 15: Variety nos 1 to 15. Abbreviations see Tab. 2

<table>
<thead>
<tr>
<th></th>
<th>Moy 1</th>
<th>Moy 2</th>
<th>Moy 3</th>
<th>Moy 4</th>
<th>Moy 5</th>
<th>Moy 6</th>
<th>Moy 7</th>
<th>Moy 8</th>
<th>Moy 9</th>
<th>Moy 10</th>
<th>Moy 11</th>
<th>Moy 12</th>
<th>Moy 13</th>
<th>Moy 14</th>
<th>Moy 15</th>
<th>Effet var</th>
<th>Interaction pos X var</th>
<th>Interaction gref X var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep1</td>
<td>29.5</td>
<td>41.3</td>
<td>40.2</td>
<td>25.6</td>
<td>30.1</td>
<td>28.7</td>
<td>25.6</td>
<td>41.2</td>
<td>27.4</td>
<td>22.9</td>
<td>41.4</td>
<td>0.0</td>
<td>47.9</td>
<td>41.3</td>
<td>44.0</td>
<td>***</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td>Rep2</td>
<td>49.3</td>
<td>60.3</td>
<td>54.3</td>
<td>46.7</td>
<td>49.6</td>
<td>38.7</td>
<td>28.9</td>
<td>62.8</td>
<td>45.2</td>
<td>47.0</td>
<td>60.7</td>
<td>30.0</td>
<td>63.5</td>
<td>57.4</td>
<td>65.4</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Inf4mIP</td>
<td>60.3</td>
<td>69.6</td>
<td>85.7</td>
<td>62.5</td>
<td>64.3</td>
<td>56.0</td>
<td>87.5</td>
<td>65.3</td>
<td>48.4</td>
<td>73.3</td>
<td>51.6</td>
<td>-</td>
<td>90.3</td>
<td>80.9</td>
<td>57.3</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Inf5mIP</td>
<td>65.3ab</td>
<td>69.6ab</td>
<td>85.7ab</td>
<td>62.5ab</td>
<td>64.3ab</td>
<td>70.0ab</td>
<td>87.5ab</td>
<td>89.4ab</td>
<td>48.4ab</td>
<td>76.7ab</td>
<td>51.6ab</td>
<td>-</td>
<td>97.2ab</td>
<td>100.0a</td>
<td>57.3ab</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Inf1anIP</td>
<td>100.0a</td>
<td>75.0ab</td>
<td>100.0a</td>
<td>100.0a</td>
<td>100.0a</td>
<td>100.0a</td>
<td>100.0a</td>
<td>100.0a</td>
<td>100.0a</td>
<td>100.0a</td>
<td></td>
<td>100.0a</td>
<td>96.9a</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Inf4mT</td>
<td>70.3</td>
<td>65.5</td>
<td>75.0</td>
<td>50.9</td>
<td>46.8</td>
<td>63.3</td>
<td>87.5</td>
<td>67.2</td>
<td>48.6</td>
<td>60.8</td>
<td>54.2</td>
<td>0.0</td>
<td>80.3</td>
<td>81.5</td>
<td>64.7</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Inf5mT</td>
<td>74.4</td>
<td>65.5</td>
<td>75.0</td>
<td>50.9</td>
<td>46.8</td>
<td>60.0</td>
<td>87.5</td>
<td>69.0</td>
<td>48.6</td>
<td>64.2</td>
<td>54.2</td>
<td>0.0</td>
<td>85.5</td>
<td>100.0a</td>
<td>64.7</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Inf1anT</td>
<td>90.0</td>
<td>71.4</td>
<td>87.0</td>
<td>50.9</td>
<td>80.7</td>
<td>86.7</td>
<td>100.0</td>
<td>96.2</td>
<td>66.0</td>
<td>83.3</td>
<td>95.9</td>
<td>0.0</td>
<td>92.1</td>
<td>100.0</td>
<td>95.3</td>
<td>***</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tableau 7

Indice d’efficacité calculé à t0 + 5 mois. Abréviations voir Tab. 2

Efficiency calculated at t0 + 5 months. Abbreviations see Tab. 2

<table>
<thead>
<tr>
<th>GREFFAGE SUR BOIS</th>
<th>GREFFAGE EN VERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG NE</td>
<td>RG E</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Taux de réussite</td>
<td>70.5</td>
</tr>
<tr>
<td>Taux d’infection</td>
<td>97.1</td>
</tr>
<tr>
<td>Efficacité 1</td>
<td>68.5</td>
</tr>
<tr>
<td>% greffes exploitées</td>
<td>70.5</td>
</tr>
<tr>
<td>Taux d’infection 2</td>
<td>97.1</td>
</tr>
<tr>
<td>Efficacité 2</td>
<td>68.5</td>
</tr>
</tbody>
</table>
Toutes les variétés ne se comportent néanmoins pas de la même façon. Ainsi, les variétés 1 (140 Ruggeri) et 12 (A. brevipedunculata) ont donné de moins bons résultats avec le greffage sur bois qu'avec le greffage en vert. Deux explications sont possibles : soit ce sont des vignes qui réagissent mal au greffage sur bois, soit leur bois se conserve mal. De même, les variétés 12 (A. brevipedunculata), 6 (Irsay Oliver) et 7 (Perle de Csaba) présentent une aptitude au bouturage par rapport au greffage différente de celle des autres variétés. En effet, la première a tendance à se bouturer beaucoup mieux qu'elle ne se greffe, et les deux autres présentent des aptitudes équivalentes.

Ainsi, en considérant à la fois les deux critères taux de reprise et taux d'infection, nous pouvons conclure que la méthode d'inoculation la plus efficace consiste à effectuer une greffe omega sur bois avec l'inoculum en position de porte-greffe (Tab. 7). Mais ce greffage nécessite d'avoir du bois et ne peut donc être effectué qu'à une certaine période de l'année.

L'avantage de la greffe en vert réside dans le fait qu'elle est utilisable tout au long de l'année. Les meilleurs taux d'infection sont alors obtenus dans tous les cas avec l'inoculum en position de porte-greffe. En ce qui concerne le taux de reprise, toutes les modalités du greffage en vert sont équivalentes sauf lorsque l'inoculum-porte-greffe est préalablement enraciné (Tab. 7). Ces valeurs du taux de reprise sont deux fois plus faibles que celles obtenues avec la meilleure modalité du greffage sur bois.

Si pour des raisons de disponibilité d'inoculum, ce dernier devait être en position de greffon, il est préférable de prendre en compte les greffes exploitables car le plus grand nombre de pieds compense le moins bon taux d'infection. Toutefois, l'indice d'efficacité reste quand même inférieur à celui obtenu lorsque l'inoculum se trouve en position de porte-greffe, ce dernier n'étant pas préalablement enraciné (Tab. 7). La transmission virale s'avère être bien meilleure dans ce dernier cas. Le mouvement ascendant du virus semble donc plus rapide que son mouvement descendant, ce qui peut s'expliquer par des échanges plus importants du porte-greffe vers le greffon, et ce d'autant plus que la poussée du porte-greffe-inoculum est coupée, afin de permettre la croissance du greffon.

En conclusion, dans la mesure où l'inoculation à l'aide du vecteur naturel ainsi que l'inoculation mécanique d'un virus à la vigne ne sont pas applicables à grande échelle, la greffe-bouture herbacée avec l'inoculum en position de porte-greffe semble être tout à fait adaptée à la recherche de génotypes résistants en permettant l'inoculation d'un grand nombre de variétés.

Etant donnés les avantages que présente la greffe en vert en ce qui concerne la surface nécessaire à sa réalisation et sa vitesse de manipulation, son plus faible taux de reprise par rapport à la greffe sur bois peut être compensé par un plus grand nombre de greffes réalisées au départ.

Remerciements

Nous remercions P. Bass pour ses conseils techniques, ainsi que A. Bouquet et C. Greip pour leur lecture critique de l'article.

Références bibliographiques

Reçu le 6 Avril 1995